328 research outputs found

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Calypso Service Architecture for Broadband Networks

    Full text link
    The Calypso project aims at developing an extremely flexible control and service architecture for ATM-based broadband networks. This architecture provides various alternatives to distribute the network and service control functions among clients, servers and different network nodes. This means that a control or service function can reside not only in a network node, but in the customer's workstation or in the service provider's dedicated server. Instead of the traditional ATM or IN signalling, the Calypso architecture uses the TCP/IP protocol suite for the management and control of the network and services. The management, control and user data is transferred by means of IP switching. In addition to IP switching, the architecture will support endto -end native ATM streams with guaranteed Quality of Service. In this paper we compare the Calypso architecture with the traditional B-ISDN and IN architectures. We focus on describing the Java-based Service Execution Environment that provides..

    The gauge theory of dislocations: static solutions of screw and edge dislocations

    Full text link
    We investigate the T(3)-gauge theory of static dislocations in continuous solids. We use the most general linear constitutive relations bilinear in the elastic distortion tensor and dislocation density tensor for the force and pseudomoment stresses of an isotropic solid. The constitutive relations contain six material parameters. In this theory both the force and pseudomoment stresses are asymmetric. The theory possesses four characteristic lengths l1, l2, l3 and l4 which are given explicitely. We first derive the three-dimensional Green tensor of the master equation for the force stresses in the translational gauge theory of dislocations. We then investigate the situation of generalized plane strain (anti-plane strain and plane strain). Using the stress function method, we find modified stress functions for screw and edge dislocations. The solution of the screw dislocation is given in terms of one independent length l1=l4. For the problem of an edge dislocation, only two characteristic lengths l2 and l3 arise with one of them being the same l2=l1 as for the screw dislocation. Thus, this theory possesses only two independent lengths for generalized plane strain. If the two lengths l2 and l3 of an edge dislocation are equal, we obtain an edge dislocation which is the gauge theoretical version of a modified Volterra edge dislocation. In the case of symmetric stresses we recover well known results obtained earlier.Comment: 33 pages, 17 figure

    HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    Get PDF
    Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group
    corecore